QOJ.ac

QOJ

Top Rated Accepted

#201: addiyoue

Accepted: : 260
You Know Who

#201: ucup-team1447

Accepted: : 260
没队要

#201: ucup-team3099

Accepted: : 260

#204: He_Ren

Accepted: : 259

#204: hydd

Accepted: : 259
But are we all lost stars trying to light up the dark?

#206: lgvc

Accepted: : 257

#206: NKheyuxiang

Accepted: : 257

#206: ucup-team4527

Accepted: : 257

#206: ucup-team5071

Accepted: : 257

#210: _CLY_

Accepted: : 256

#211: wsc2008

Accepted: : 254

#212: ucup-team6336

Accepted: : 252

#213: ucup-team3515

Accepted: : 251

#214: ucup-team180

Accepted: : 249

#215: IllusionaryDominance

Accepted: : 248

#215: tricyzhkx

Accepted: : 248

#217: ucup-team2307

Accepted: : 247

#218: ucup-team2172

Accepted: : 246
法克皮百吨

#219: 617lyq

Accepted: : 245

#219: ucup-team1293

Accepted: : 245

#221: Misuki

Accepted: : 244
$\mathbb{C}[x]/(x^{2^n} - 1) \cong \mathbb{C}[x]/(x - \omega) \times \mathbb{C}[x]/(x - \omega^2) \times \ldots\times \mathbb{C}[x]/(x - \omega^{2^n})$

#222: 0000pnc

Accepted: : 243

#222: jrjyy

Accepted: : 243

#222: Register

Accepted: : 243

#225: lunchbox

Accepted: : 242

#226: carrotqq

Accepted: : 240

#226: ucup-team7536

Accepted: : 240

#228: ucup-team267

Accepted: : 239
哈姆。

#229: complexor

Accepted: : 238

#229: ucup-team2045

Accepted: : 238

#231: iee

Accepted: : 236

#231: ucup-team3627

Accepted: : 236

#233: ucup-team135

Accepted: : 235

#233: ucup-team3670

Accepted: : 235

#235: ucup-team7345

Accepted: : 233

#235: wsxcb

Accepted: : 233

#237: ucup-team3586

Accepted: : 231

#238: justin_g_20

Accepted: : 230

#238: ucup-team5008

Accepted: : 230

#238: ucup-team5015

Accepted: : 230

#241: hshhh

Accepted: : 228

#241: huaxiamengjin

Accepted: : 228

#241: qzez

Accepted: : 228
对于无向图的情况,基尔霍夫矩阵为 $K=D-A$,其中 $D$ 为度数矩阵,$A$ 为邻接矩阵。树的个数为去掉 $K$ 一行一列的行列式的值。对于外向树,$D$ 为每个点的入边度数和,内向树相反。此时需要去掉根所在行列。BEST 定理:有向欧拉图的欧拉回路个数为:内向树个数乘以 $\prod\limits_{i=1}^{n}deg_i$,其中 $deg_i$ 为 $i$ 号点的度数。

#241: ucup-team1817

Accepted: : 228

#245: cmll02

Accepted: : 227

#245: Larunatrecy

Accepted: : 227

#247: ucup-team7362

Accepted: : 226

#247: ushg8877

Accepted: : 226

#249: ucup-team4269

Accepted: : 225

#250: __jk__

Accepted: : 224

#250: SoyTony

Accepted: : 224
真実はいつもひとつ

#252: DitaMirika

Accepted: : 223
Face the fear,make the future.

#253: 8BQube

Accepted: : 222

#253: std

Accepted: : 222

#255: ucup-team3097

Accepted: : 221

#255: wcyQwQ

Accepted: : 221

#257: makrav

Accepted: : 220

#258: masterhuang

Accepted: : 219
不要逃避自己的命运

#258: ucup-team5984

Accepted: : 219

#258: xlwang

Accepted: : 219

#261: Crying

Accepted: : 218
第五人格。

#261: Whales

Accepted: : 218

#263: cooluo

Accepted: : 217
π⁴+π⁵≈e⁶ | Per Aspera Ad Astra

#263: houzhiyuan

Accepted: : 217

#263: KobicGend

Accepted: : 217

#263: maojun

Accepted: : 217

#263: shinonome_ena

Accepted: : 217

#268: chenshi

Accepted: : 216

#268: jxy2012

Accepted: : 216

#268: ucup-team6927

Accepted: : 216
一切都会逝去,唯有死神永生

#268: ucup-team870

Accepted: : 216

#268: XY_Eleven

Accepted: : 216

#273: ucup-team3862

Accepted: : 215

#274: ucup-team580

Accepted: : 214

#274: ucup-team7545

Accepted: : 214

#276: ucup-team3790

Accepted: : 213

#277: ucup-team7256

Accepted: : 212

#278: Mynoghra

Accepted: : 211
Man! Mophie out! 我们需要更多莫非!

#278: ucup-team228

Accepted: : 211

#278: Wu_Ren

Accepted: : 211

#281: LosMem

Accepted: : 210

#281: yoy68

Accepted: : 210

#281: yzhang

Accepted: : 210
如果结果不如你所愿,就在尘埃落定前奋力一搏

#284: rizynvu

Accepted: : 209

#284: ucup-team3734

Accepted: : 209

#286: superguymj

Accepted: : 208

#287: ucup-team123

Accepted: : 207

#288: CHD

Accepted: : 206
即使雨永不停歇地下,也要在未曾被雨浸透的角落保有属于自己的一小片虹。

#288: nhuang685

Accepted: : 206

#290: ax_by_c

Accepted: : 205

#290: gg_gong

Accepted: : 205
Who am I? Why am I here?

#290: ucup-team4478

Accepted: : 205

#293: Calculatelove

Accepted: : 204
Love all my perfect imperfections.

#293: do_while_true

Accepted: : 204

#293: jimmyywang

Accepted: : 204

#293: Lzy_

Accepted: : 204

#293: yyyyxh

Accepted: : 204
What is OI (O_o)?

#298: ucup-team1565

Accepted: : 203

#299: new_dawn_2

Accepted: : 202

#299: SirTechnical

Accepted: : 202
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11