Login
Register
QOJ.ac
QOJ
QOJ
Contests
Category
Problems
Submissions
Hack!
Blogs
Day 1
Day 2
Top Rated
Accepted
#1290:
ucup-team1259
Accepted: : 62
#1290:
ucup-team3742
Accepted: : 62
#1290:
ucup-team3788
Accepted: : 62
#1290:
ucup-team5226
Accepted: : 62
#1290:
ucup-team6749
Accepted: : 62
#1290:
wuxin
Accepted: : 62
#1290:
xi_xi
Accepted: : 62
#1290:
zhouyuhang
Accepted: : 62
#1309:
ai_nuo
Accepted: : 61
#1309:
As3b_team_f_masr
Accepted: : 61
#1309:
cjh20090318
Accepted: : 61
$6^{6^{6^{6^{6^6_6}_{6^6_6}}_{6^{6^6_6}_{6^6_6}}}_{6^{6^{6^6_6}_{6^6_6}}_{6^{6^6_6}_{6^6_6}}}}_{6^{6^{6^{6^6_6}_{6^6_6}}_{6^{6^6_6}_{6^6_6}}}_{6^{6^{6^6_6}_{6^6_6}}_{6^{6^6_6}_{6^6_6}}}}$
#1309:
Foedere0
Accepted: : 61
#1309:
GotoHiotori
Accepted: : 61
我大概,一辈子也忘不了 CRYCHIC
#1309:
gs14004
Accepted: : 61
#1309:
i_love_qingyu
Accepted: : 61
#1309:
Icedpiggy
Accepted: : 61
#1309:
LYY_yyyy
Accepted: : 61
#1309:
oyzr
Accepted: : 61
#1309:
The_Walker
Accepted: : 61
#1309:
ThreeKonjaks
Accepted: : 61
#1309:
ucup-team1329
Accepted: : 61
#1309:
ucup-team2866
Accepted: : 61
#1309:
ucup-team3591
Accepted: : 61
还能要吗。
#1309:
ucup-team4598
Accepted: : 61
#1309:
ucup-team5045
Accepted: : 61
#1309:
ucup-team5126
Accepted: : 61
#1309:
ucup-team5296
Accepted: : 61
We are Beta Fans.
#1309:
ucup-team6173
Accepted: : 61
#1309:
WhybullYMe
Accepted: : 61
举办一个魂喵,举办一个魂谢谢喵
#1309:
Wzy
Accepted: : 61
#1309:
xiaohuangji
Accepted: : 61
#1309:
yiyiyi
Accepted: : 61
#1309:
youthpaul
Accepted: : 61
#1309:
zdczdc
Accepted: : 61
#1335:
00
Accepted: : 60
$$e^x = \sum_{n=0} \frac{x^n}{n!}$$
#1335:
36champ
Accepted: : 60
#1335:
Arghariza
Accepted: : 60
#1335:
chaotic
Accepted: : 60
#1335:
Elegia_Girlfriend
Accepted: : 60
now I beg to see you dance just one more time
#1335:
flywatre
Accepted: : 60
#1335:
Fyind
Accepted: : 60
#1335:
losttowin
Accepted: : 60
#1335:
myd
Accepted: : 60
#1335:
olriutre
Accepted: : 60
$\mathtt{olriutre}$
#1335:
ov0
Accepted: : 60
#1335:
qinjianbin
Accepted: : 60
#1335:
Qwerty1232
Accepted: : 60
#1335:
ran_qwq
Accepted: : 60
#1335:
taniya
Accepted: : 60
$$\prod_{n=1}^\infty (1-x^n)=\sum_{k=-\infty}^\infty(-1)^kx^{\frac{k(3k-1)}{2}}=\sum_{k=0}^\infty(-1)^kx^{\frac{k(3k\pm 1)}{2}}$$
#1335:
tch1cherin
Accepted: : 60
такой ПЕТУХ залетел с CLOCKS_PER_SEC-ом!
#1335:
ucup-team1149
Accepted: : 60
Nećeš valjda da ga gledaš? / You aren't gonna look?
#1335:
ucup-team1547
Accepted: : 60
#1335:
ucup-team1688
Accepted: : 60
#1335:
ucup-team3628
Accepted: : 60
#1335:
xydCatGirl
Accepted: : 60
#1356:
415411
Accepted: : 59
#1356:
crescent
Accepted: : 59
#1356:
Doubeecat
Accepted: : 59
#1356:
evilboy
Accepted: : 59
#1356:
Legend_dy
Accepted: : 59
#1356:
MahmoudAtia
Accepted: : 59
#1356:
ORzyzRO
Accepted: : 59
#1356:
rui_er
Accepted: : 59
可爱
#1356:
tassei903
Accepted: : 59
#1356:
ucup-team1213
Accepted: : 59
#1356:
ucup-team276
Accepted: : 59
#1356:
ucup-team5357
Accepted: : 59
#1356:
ucup-team6070
Accepted: : 59
#1356:
zythonc
Accepted: : 59
#1370:
anbg
Accepted: : 58
#1370:
asdfsdf
Accepted: : 58
#1370:
cyj888
Accepted: : 58
#1370:
defyers
Accepted: : 58
#1370:
Fffoooo
Accepted: : 58
#1370:
Fysty
Accepted: : 58
#1370:
Hide_In_The_Shadow
Accepted: : 58
#1370:
hztmax0
Accepted: : 58
#1370:
kkio
Accepted: : 58
#1370:
lc20110802
Accepted: : 58
#1370:
magicduck
Accepted: : 58
#1370:
memset0
Accepted: : 58
Qingyu's Fan
#1370:
nocriz
Accepted: : 58
#1370:
piaoyun
Accepted: : 58
All I know,all I know,love will save the day
#1370:
Qzong
Accepted: : 58
#1370:
TJUHuangTao
Accepted: : 58
#1370:
tu22333
Accepted: : 58
#1370:
ucup-team027
Accepted: : 58
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
#1370:
ucup-team1769
Accepted: : 58
#1370:
ucup-team2051
Accepted: : 58
#1370:
ucup-team3528
Accepted: : 58
#1370:
ucup-team356
Accepted: : 58
#1370:
wzxtsl
Accepted: : 58
#1393:
by_chance
Accepted: : 57
#1393:
Geospiza
Accepted: : 57
#1393:
Harold0895
Accepted: : 57
#1393:
Iris
Accepted: : 57
?
#1393:
Kdlyh
Accepted: : 57
#1393:
lianhao
Accepted: : 57
#1393:
libantian
Accepted: : 57
#1393:
pretentious
Accepted: : 57
$$\det(AB) = \sum_{S\in\tbinom{[n]}m} \det(A_{[m],S})\det(B_{S,[m]})$$
9
10
11
12
13
14
15
16
17
18
19