QOJ.ac

QOJ

Top Rated Accepted

#1290: ucup-team1259

Accepted: : 62

#1290: ucup-team3742

Accepted: : 62

#1290: ucup-team3788

Accepted: : 62

#1290: ucup-team5226

Accepted: : 62

#1290: ucup-team6749

Accepted: : 62

#1290: wuxin

Accepted: : 62

#1290: xi_xi

Accepted: : 62

#1290: zhouyuhang

Accepted: : 62

#1309: ai_nuo

Accepted: : 61

#1309: As3b_team_f_masr

Accepted: : 61

#1309: cjh20090318

Accepted: : 61
$6^{6^{6^{6^{6^6_6}_{6^6_6}}_{6^{6^6_6}_{6^6_6}}}_{6^{6^{6^6_6}_{6^6_6}}_{6^{6^6_6}_{6^6_6}}}}_{6^{6^{6^{6^6_6}_{6^6_6}}_{6^{6^6_6}_{6^6_6}}}_{6^{6^{6^6_6}_{6^6_6}}_{6^{6^6_6}_{6^6_6}}}}$

#1309: Foedere0

Accepted: : 61

#1309: GotoHiotori

Accepted: : 61
我大概,一辈子也忘不了 CRYCHIC

#1309: gs14004

Accepted: : 61

#1309: i_love_qingyu

Accepted: : 61

#1309: Icedpiggy

Accepted: : 61

#1309: LYY_yyyy

Accepted: : 61

#1309: oyzr

Accepted: : 61

#1309: The_Walker

Accepted: : 61

#1309: ThreeKonjaks

Accepted: : 61

#1309: ucup-team1329

Accepted: : 61

#1309: ucup-team2866

Accepted: : 61

#1309: ucup-team3591

Accepted: : 61
还能要吗。

#1309: ucup-team4598

Accepted: : 61

#1309: ucup-team5045

Accepted: : 61

#1309: ucup-team5126

Accepted: : 61

#1309: ucup-team5296

Accepted: : 61
We are Beta Fans.

#1309: ucup-team6173

Accepted: : 61

#1309: WhybullYMe

Accepted: : 61
举办一个魂喵,举办一个魂谢谢喵

#1309: Wzy

Accepted: : 61

#1309: xiaohuangji

Accepted: : 61

#1309: yiyiyi

Accepted: : 61

#1309: youthpaul

Accepted: : 61

#1309: zdczdc

Accepted: : 61

#1335: 00

Accepted: : 60
$$e^x = \sum_{n=0} \frac{x^n}{n!}$$

#1335: 36champ

Accepted: : 60

#1335: Arghariza

Accepted: : 60

#1335: chaotic

Accepted: : 60

#1335: Elegia_Girlfriend

Accepted: : 60
now I beg to see you dance just one more time

#1335: flywatre

Accepted: : 60

#1335: Fyind

Accepted: : 60

#1335: losttowin

Accepted: : 60

#1335: myd

Accepted: : 60

#1335: olriutre

Accepted: : 60
$\mathtt{olriutre}$

#1335: ov0

Accepted: : 60

#1335: qinjianbin

Accepted: : 60

#1335: Qwerty1232

Accepted: : 60

#1335: ran_qwq

Accepted: : 60

#1335: taniya

Accepted: : 60
$$\prod_{n=1}^\infty (1-x^n)=\sum_{k=-\infty}^\infty(-1)^kx^{\frac{k(3k-1)}{2}}=\sum_{k=0}^\infty(-1)^kx^{\frac{k(3k\pm 1)}{2}}$$

#1335: tch1cherin

Accepted: : 60
такой ПЕТУХ залетел с CLOCKS_PER_SEC-ом!

#1335: ucup-team1149

Accepted: : 60
Nećeš valjda da ga gledaš? / You aren't gonna look?

#1335: ucup-team1547

Accepted: : 60

#1335: ucup-team1688

Accepted: : 60

#1335: ucup-team3628

Accepted: : 60

#1335: xydCatGirl

Accepted: : 60

#1356: 415411

Accepted: : 59

#1356: crescent

Accepted: : 59

#1356: Doubeecat

Accepted: : 59

#1356: evilboy

Accepted: : 59

#1356: Legend_dy

Accepted: : 59

#1356: MahmoudAtia

Accepted: : 59

#1356: ORzyzRO

Accepted: : 59

#1356: rui_er

Accepted: : 59
可爱

#1356: tassei903

Accepted: : 59

#1356: ucup-team1213

Accepted: : 59

#1356: ucup-team276

Accepted: : 59

#1356: ucup-team5357

Accepted: : 59

#1356: ucup-team6070

Accepted: : 59

#1356: zythonc

Accepted: : 59

#1370: anbg

Accepted: : 58

#1370: asdfsdf

Accepted: : 58

#1370: cyj888

Accepted: : 58

#1370: defyers

Accepted: : 58

#1370: Fffoooo

Accepted: : 58

#1370: Fysty

Accepted: : 58

#1370: Hide_In_The_Shadow

Accepted: : 58

#1370: hztmax0

Accepted: : 58

#1370: kkio

Accepted: : 58

#1370: lc20110802

Accepted: : 58

#1370: magicduck

Accepted: : 58

#1370: memset0

Accepted: : 58
Qingyu's Fan

#1370: nocriz

Accepted: : 58

#1370: piaoyun

Accepted: : 58
All I know,all I know,love will save the day

#1370: Qzong

Accepted: : 58

#1370: TJUHuangTao

Accepted: : 58

#1370: tu22333

Accepted: : 58

#1370: ucup-team027

Accepted: : 58
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

#1370: ucup-team1769

Accepted: : 58

#1370: ucup-team2051

Accepted: : 58

#1370: ucup-team3528

Accepted: : 58

#1370: ucup-team356

Accepted: : 58

#1370: wzxtsl

Accepted: : 58

#1393: by_chance

Accepted: : 57

#1393: Geospiza

Accepted: : 57

#1393: Harold0895

Accepted: : 57

#1393: Iris

Accepted: : 57
?

#1393: Kdlyh

Accepted: : 57

#1393: lianhao

Accepted: : 57

#1393: libantian

Accepted: : 57

#1393: pretentious

Accepted: : 57
$$\det(AB) = \sum_{S\in\tbinom{[n]}m} \det(A_{[m],S})\det(B_{S,[m]})$$
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19